1. <acronym id="kanwj"></acronym>

    <strong id="kanwj"></strong>
    <span id="kanwj"><output id="kanwj"><nav id="kanwj"></nav></output></span>
    <ol id="kanwj"><output id="kanwj"></output></ol>

    當前位置: 首頁  講座會議
    理學院迎百年校慶系列報告(十一):The LDG methods for typical time-fractional partial differential equations
    [ 作者:姜薇 來源:理學院 瀏覽:10 錄入時間:2019年08月12日 ]

    報告時間:2019815 15:00-16:00


    報告摘要:In this talk, we present the local discontinuous Galerkin(LDG) finite element methods for typical time-fractional partial differential equations (TFPDEs): reaction-diffusion equation, reaction-diffusion-wave equation, and cable equation, where the time fractional derivative is in the sense of Caputo. The existence, uniqueness, and regularity of solutions of the above equations are studied. The stability, convergence, and error estimates of the derived DG schemes are displayed. And the numerical examples are also included which support the theoretical analysis.



        現任上海大學理學院教授、博士生導師,其主要研究方向為分數階偏微分方程數值解等。在World Scientific編輯專著一部,在Chapman and Hall/CRC出版專著一部。他現任Applied Numerical MathematicsJournal of Nonlinear Science等雜志編委,任德國德古意特系列叢書“應用科學和工程中的分數階微積分”主編(Editor-in-chief and founding editor of the book series: Fractional Calculus in Applied Sciences and Engineering, De Gruyter, Germany), 兩次獲上海市自然科學獎(20102017)上海市優秀博士學位論文指導教師(2016)獲分數階微積分領域的黎曼-劉維爾理論文章獎(2012)獲寶鋼優秀教師獎(2011)